

OSU Guidance Document Development

Co-Leaders: Martin Spencer, Yonas Behboud

Presented by: Yaw Agyei, Boeing

IAMFTF - Spring Meeting Savannah, GA

OSU Guidance Document Development

- Background
- Methodology
- Current Developments
 - Operations / Maintenance section
 - Boeing success weekly standard coupons
- Next Steps
- Contacts

OSU Guidance Document Development

Background

- Collaborative effort of Fire Test Forum OSU Task Group
- Document to provide commonality on previously unaddressed, misunderstood, and/or unspecified parts of OSU specifications
- Goal is to reduce variation between test labs
 - Shift to or stay in the center of green

OSU Guidance Document Development

Methodology

- Joint meeting by Boeing and MarlinEngineering to evaluate Mike's list
- List grouped into three (3) distinct sections
 - 1. Manufacturing MarlinEngineering
 - Installation MarlinEngineering / Boeing
 - 3. Operations / Maintenance Boeing / Marlin Engineering

Current Developments

Operations / Maintenance Section

- Drafted by Boeing
- Includes:
 - Daily checklist to reset machines
 - Weekly tasks to check machine performance
 - Monthly thorough inspection
 - Clean unit
 - Verify distances and sizes of critical test parts
 - Inspect, replace gaskets and insulation
 - Conduct wet test meter methane gas calibration

Daily Startup Checklist - Cold Start

- Ensure methane gas bottle is charged (≥ 250 psi)
- 2. Clean upper chimney and inner walls with brush
- 3. Brush off air mixing plate and verify position in upper chimney
- 4. Brush soot and contaminates from thermocouples using a soft-bristled brush. Properly position thermocouples and ensure wires are separated. Use a poke-yoke to assist with thermocouple positioning.
- 5. Clean upper pilot tube using wire brush
- 6. Verify lower and upper pilot position
- 7. Vacuum test and holding chamber
- 8. Visually check that air holes in floor of chamber are clear
- Clean window and mirror
- 10. Check position of diamond
- 11. Ensure holding chamber doors close completely around sample insertion rod
- 12. Check condition of sample holders, visually check wires on holders.
- 13. Turn on supply air and set to 85 ft³/min
- 14. Power on unit. Allow unit to equilibrate (approximately 1.5 hours)

Daily Startup Checklist - Hot Start / Calibration

- 1. Check condition of calorimeters in calibration apparatus for possible damage. Ensure calorimeters are flush with the frame of the holder
- 2. Insert calibration apparatus in holding chamber and turn on water circulator for heat flux gauges
- 3. Calibrate center and corner heat flux (daily)
 - 1. Insert calibration apparatus and condition calorimeters in holding chamber for 60 seconds
 - 2. Insert calorimeter in testing chamber for 15 seconds
 - 3. Record average heat flux of last 5 seconds of insertion
 - 4. Measure heat flux three (3) times for center record average
 - 5. Measure heat flux of all four corners once record average
- 4. Record power output to achieve desired heat flux density
- 5. Record thermopile output at heat flux density
- 6. Ignite lower and upper pilots
- 7. Record thermopile output with pilots lit
- 8. Burn sacrificial panel

Weekly Machine Health Check

- Perform five (5) runs of standard coupons weekly to assess the overall unit after completing daily checklist
- Conduct periodic trend analysis of standard coupons measurements
- Pinpoint potential issues and resolve if possible

Standard Coupons

- Currently developing standard coupons that produces 55/55 measures for a better indicator of machine health
 - Combination of transfer tapes (adhesive thickness, width) and aluminum (thickness)

Standard coupons construction examples

- Aluminum with 3M transfer tape
 - 3M 950 Adhesive Transfer Tapes with Adhesive 300 (6" wide rolls)
 - 0.060" Aluminum
- Schneller honeycomb panels

Monthly Maintenance Checklist

- Verify distance travelled by coupon in the chamber
- Verify the inner doors seal completely around the sample insertion rod, adjust as needed
- Inspect seal of outer doors and replace as needed
- Inspect seal of maintenance hatch replace as needed
- Visually inspect condition of insulation replace as needed
- Clean environmental chamber floor pan (120 holes) and ream with #28 drill
- Clean the T-bar calibration burner, ream holes with a #32 drill
- Inspect thermocouple wires and thermocouple bead sizes
- Visually inspect global wires replace as needed
- Remove and inspect upper pilot burner, ream holes with #59 drill
- Clean upper air distribution plate and ream with #26 drill
- Remove and clean lower pilot burner tube
- Conduct wet test meter methane calibration

Current Boeing Results - Peak

- 3 Boeing OSU test units are in the center of green for light brown honeycomb panel
 - 720 total runs, over 18 months
- Average individual unit result within 3% of average

Next Steps

Operation and Maintenance

Detailed maintenance schedule and potential repairs

Draft sections for Manufacturing and Installation

- MarlinEngineering and Boeing
- Contributions from OSU Task Group

Continue development activities to improve machine performance

- Voltage stabilization with Power Conditioner
- Standardizing Air Flow Split

Contacts

Marlin Engineering

Martin Spencer – mspencer@marlinengineer.com

Boeing

- Yaw Agyei yaw.s.agyei@boeing.com
- Yonas Behboud yonas.behboud2@boeing.com